Workflow Tracking for Industrial Manufacturing

WorkIT – Workflow and Tool Process Modelling Guide – Guidance and Assistance

Pro²Future

Bernhard Anzengruber-Tanase¹, Georgios Sopidis¹, Michael Haslgrübler¹

Pro2Future GmbH¹ ¹ Science Park 3, Altenberger Strasse 69, 4040 Linz, Austria

MOTIVATION & GOALS

Workflow Tracking is an important and complex stepping stone for the implementation of cognitive industrial assistance and quality assurance systems. Knowledge of the current work step enables correlation of the worker's observed activities with the scheduled tasks and thus decision making with respect to assistance provisioning and monitoring.

In the frame of the WorkIT and Guide projects, such a workflow tracking system was successfully instantiated for industrial assembly and manufacturing. The goal of this system is to automatically determine the current work step during assembly of industrial digging machines based solely on the workers' hand movements and noises in their surrounding.

APPROACH AND ARCHICTECTURE

Combination and comparison of different machine learning approaches (deep learning; ensemble classifiers) towards implementation of a classification **pipeline** for industrial workflow tracking.

Project FactBox

Project Name WorkIT/Guide DP1.6/DP1.1 Project ID Duration 36 Months

Area 1 Perception and Aware Systems

Project Lead Prof. Dr. Alois Ferscha

CONTRIBUTION

Scientific contribution

Combination of different, established machine learning approaches towards the implementation of workflow tracking. Comparison of their strengths and weaknesses. Applied research in the field of industrial manufacturing.

Economic contribution

Implementation of quality assurance.

FC FIELD

SOFTMAX

RESULTS LOW LEVEL RECOGNITION

Acknowledgement: This work was supported by Pro²Future (FFG, 854184) and Wacker Neuson.

Activity Recognition (IMU data) 6 states, 700-1400ms windows; random forest

10 states, 10000ms window; deep learning using

RESULTS WORKFLOW RECOGNITION

features state management, state post processing

ર્જી

SFG 🔰