ConMon

Anomaly Detection on Cyclic Industrial Sensor Data

Josef Suschnigg¹, Belgin Mutlu¹, Georgios Koutroulis¹, Tobias Schreck²

Pro2Future GmbH¹, TUG-CGV (Institute of Computer Graphics and Knowledge Visualization)²

- ¹ Inffeldgasse 25F, 8010 Graz, Austria
- ² Inffeldgasse 16C, 8010 Graz, Austria

MOTIVATION & GOALS

- Huge amounts of (timeseries) data are generated in durability tests of engines
- Each test in divided in multiple cycles
- In each cycle, hundreds of sensors measure different signals: multivariate timeseries
- These data can be used to analyse/predict the condition of the engines
- E.g., to identify anormal behaviour in advance to avoid unplanned breakdowns
- To support engineers with the analysis, we provide an interactive visual analytics tool for anomaly detection in multivariate timeseries data

Project FactBox

Project Name ConMon
Project ID MFP 3.2.2
Duration 36 Months

Area 3

Cognitive Decision Support

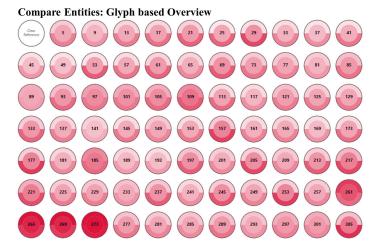
Project Lead

Dr. Belgin Mutlu Prof. Dr. Tobias Schreck

APPROACH

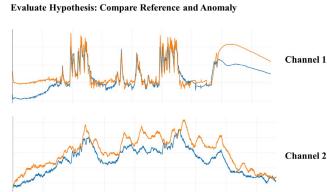
- Interactive visual analytics tool which combines several anomaly detectors
 - regression-model-based
 - causality-based
 - correlation-based
- Glyph-based approach enables the exploration of anomalies in cyclic data
- Interactive labelling through a user interface captures engineers domain knowledge for further processing

CONTRIBUTION


Scientific contribution

- Applied research in anomaly detection on real life testbed data
- Multiple user studies and design studies with the domain experts
- 1 accepted paper, 3 papers to be submitted

Economic contribution


Our user study with the domain experts has revealed the effectivity and efficiency of our tool for in a real life setting.

PROTOTYPE

Exploration of Anomalies in Cyclic Multivariate Industrial Time Series Data for Condition Monitoring

Contact: DI Josef Suschnigg, Pro2Future GmbH, josef.suschnigg@pro2future.at, +43 316 873 - 9160 **Acknowledgement**: This work was supported by Pro²Future (FFG, 854184) and AVL List GmbH.

