DRIWE

Dependable RF Communication Systems for In-Car Wireless Sensors

Daniel Kraus¹, Konrad Diwold¹, Peter Priller², Jasmin Grosinger³, Erich Leitgeb³

Pro2Future GmbH¹, AVL List GmbH², TUG-IHF (Institute of Microwave and Photonic Engineering)³

- ¹ Inffeldgasse 25F, 8010 Graz, Austria
- ² Mariengasse 63, 8020 Graz, Austria
- ³ Inffeldgasse 12/I, 8010 Graz, Austria

MOTIVATION & GOALS

- Dependable reliable wireless communication the goal of any sensor-based system
- Wireless systems are very difficult to implement in certain environments
- Attain reliable wireless communication systems in harsh environments
- Systems can be **tailored** and **automated** towards specific harsh application environments
- Use accurate **EM simulation models** to estimate wireless communication parameters
- Achieve a high reliability and throughput based on simulations
- Validation of simulated data in real environments
- Software tool that gives parameter recommendations for each individual scenario

Project FactBox

Project Name DRIWE
Project ID MFP 4.1.3-1
Duration 36 Months

Area 4.1

Cognitive Products

Project LeadDr. Konrad Diwold

APPROACH

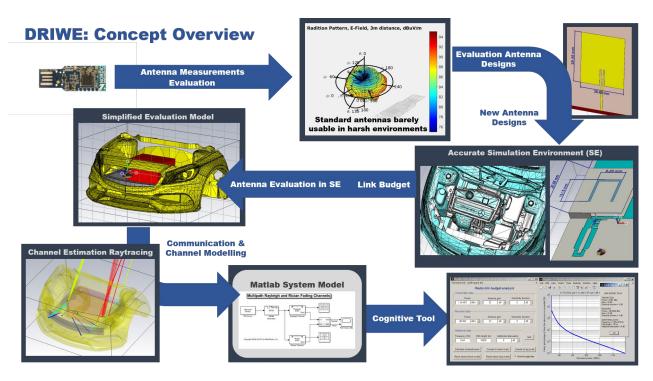
Evaluation of existing systems and components by measurements and simulations

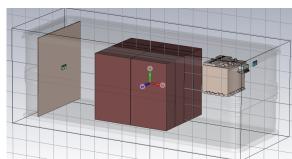
Verification of results in real testbeds
(demonstrator setup & engine compartment)

Implementation of a Matlab/Simulink model to simplify the whole calculation process

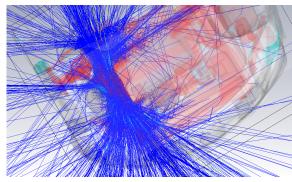
Creation of a **cognitive tool** with generated results

CONTRIBUTION


Scientific contribution


Development of new methods to optimize a wireless communication system and all the required parameters in a harsh environment. The methods are applicable for a wide range of industrial applications.

Economic contribution


The resulting cognitive tool will enable technicians to pick the best components and positions for wireless communication systems without the requirement of additional expertise.

SYSTEM ARCHITECTURE

Simulation setup of the demonstrator box

Raytracing applied in an engine compartment model

Contact: DI Daniel Kraus, Pro2Future GmbH, daniel.kraus@pro2future.at, +43 316 873 - 9158 **Acknowledgement**: This work was supported by Pro2Future (FFG, 854184) and AVL List GmbH.

