Cognitive Polymer Extrusion & Compounding

Numerically and Experimentally Driven Analysis of **Flow Instabilities in Multilayer Co-Extrusion**

Pro²Future

Alexander Hammer¹, Wolfgang Roland¹, Maximilian Zacher², Bernhard Löw-Baselli¹ JKU-IPEC (Institute of Polymer Extrusion and Compounding)¹, Pro2Future GmbH²

¹ Science Park 2, Altenberger Straße 69, 4040 Linz, Austria ² Science Park 3, Altenberger Straße 69, 4040 Linz, Austria

MOTIVATION & GOALS

Co-extrusion is a highly efficient process technology that allows **targeted combination** of individual polymeric materials within a **multilayer structure**. Interfacial flow instabilities are a typical limiting factor for the maximum production rate. Profound knowledge of critical flow situations offers possibilities in optimizing die and process design. The goals of this project are:

- Initiation and detection of interfacial flow instabilities under controlled flow situations
- Characterization of co-extrusion flow situations
- Identification of critical parameters causing flow instabilities and determination of their limiting values
- Implementation in co-extrusion flow simulations to predict critical flow situations

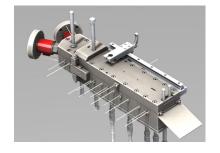
Simulations

h h

Velocity profile

Viscosity ratio, ...

Interfacial shear stress

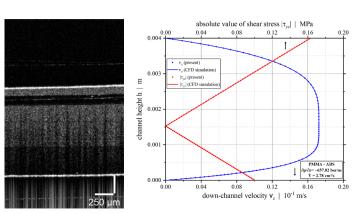

 $v_z(y)$

Fluid B

Fluid A

APPROACH

Co-extrusion Experiments



- Two-layer co-extrusion flow in demonstrator
- OCT / Ultrasonic sensor

RESULTS

- Co-extrusion demonstration die developed
- Measurement system to detect interfacial flow instabilities
- Numerical solver to evaluate two-layer co-extrusion die flows

Contact: DI Alexander Hammer, JKU-IPEC, alexander.hammer@jku.at, +43 732 2468 - 6746 Acknowledgement: This work was supported by Pro²Future (FFG, 854184) and Soplar sa.

Validation

- Application of findings to multilayer products

CONTRIBUTION

Scientific contribution Co-extrusion demonstration die OCT and ultrasonic sensor technology Numerical co-extrusion flow solver Novel models for interfacial flow properties

Economic contribution

Polymer Extrusion

25.0

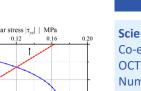
Expertise in co-extrusion process technology Experience of critical flow situations Material and equipment for model validation

Project FactBox

Project Name CoExCo Project ID MFP 4 2 1 Duration 48 Months

Area 4.2 Cognitive Production Systems

Project Lead Mag. Bernhard Löw-Baselli



soplar sa

SFG 💙

Data Analysis

10.0

Statistical analysis of

experimental and

simulation data

total throughput | kg.h-1

15.0

0.00E+00

5.00E+03

-1.00E+04

-1.50E+04

2 00F+04