Cognitive Polymer Extrusion & Compounding Hybrid Modelling of Pressure-Throughput Relationship for **Kneading Blocks in Co-rotating Twin-Screw Extruders**

Pro²Future

Ursula Stritzinger¹, Wolfgang Roland¹, Hanny Albrecht², Bernhard Löw-Baselli¹ JKU-IPEC (Institute of Polymer Extrusion and Compounding)¹, Pro2Future GmbH²

¹ Science Park 2, Altenberger Straße 69, 4040 Linz, Austria

² Science Park 3, Altenberger Straße 69, 4040 Linz, Austria

MOTIVATION

- Twin-screw extruders are one of the most used machineries in polymer processing
- Co-rotating twin-screw extruders are typically operated in starve-fed mode
- Back-pressure length and material distribution are key process parameters
- Kneading blocks are commonly approximated as conveying elements

APPROACH

Dimensional Analysis

Regression Analysis CFD-Parametric Study $\Pi_D = \frac{D_a}{D_a}$ $\Pi_{p/L} = \frac{D}{nN} \frac{\partial p}{\partial L}$ 60 40 20 $\Pi_{\underline{\dot{Q}}_{Diss}/L} = \frac{1}{D^2 N^2 \eta} \frac{\partial \underline{\dot{Q}}_{Diss}}{\partial L}$

RESULTS

- We developed symbolic regression models for the dimensionless conveying parameters A₁ and A₃.
- Our models can be used for e.g. screw design, digital twin, model based control and process optimization.

Contact: DI Ursula Stritzinger, JKU-IPEC, ursula.stritzinger@jku.at, +43 732 2468 - 6745 Acknowledgement: This work was supported by Pro²Future (FFG, 854184) and Leistritz Extrusionstechnik GmbH.

GOALS

- **Generalized Pressure-Throughput** model for kneading blocks
- For various commonly used offset angles, diameter ratios, kneading disc sizes and undercuts
- Easy handling of the model
- Prediction of the material and pressure distribution along the screw

Project FactBox

Project Name CoExCo Project ID MFP 4 2 1 48 Months Duration

Area 4.2 Cognitive Production Systems

Project Lead Mag. Bernhard Löw-Baselli

Validation

CONTRIBUTION

Scientific contribution

Accurate Pressure-Throughput prediction of kneading blocks All gap regions were taken into account First valid modelling approach for non-conveying elements Novel power consumption model for kneading blocks

Institute of

Polymer Extrusion

Leistritz

SFG 💙

Economic contribution Geometry specifications Material and Equipment for model validation Expertise of the twin-screw extrusion process Guidelines for the range of the parameters

IDEC

