COGNITIVE LINE BALANCING SUPPORT

Recommending Assembly Work to Station Assignment & Dependency Mining based on Historical Data

Ouijdane Guiza¹, Christoph Mayr-Dorn², Anamaria Roberta Preda², Alexander Egyed²

Pro2Future GmbH¹, JKU-ISSE (Institute for Software Systems Engineering)²

- ¹ Pro2Future GmbH, Altenberger Strasse 69, 4040 Linz
- ² Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz

MOTIVATION & GOALS

- Assembly line balancing is a complex and time-consuming process
- Experts rely on tacit knowledge of prior balancing solutions and assembly requirements (tasks dependencies, resources availability, etc.)
- Explicitly modelling all dependencies is not only a very costly (because time consuming) task but also quickly outdated.
- Instead, our goal is to rely on prior balancing solutions to find similar situations, and produce a baseline balancing solution and learn the assembly dependency graph

Project FactBox

Project Name Line TACT
Project ID MFP II 2.2 CSA
Duration 24 Months

Area 2

Cognitive Robotics and Shop Floors

Project Lead

DI Michael Mayrhofer

APPROACH

- Investigating multiple metrics to calculate similarities to available balancing solutions of different products.
- Recommendations of assembly work to station assignment based on the calculated similarities.
- On average our approach provides recommendations for
 91.5% of assembly tasks at 82% precision.
- Mining of assembly dependencies between tasks based on different tacts and available similar products.
- Assembly task sequence recommendation, inconsistency detection, and repair based on the mined dependency graph.
- Integrating error feedback from users.

CONTRIBUTION

Scientific contribution

A novel approach based on structural similarities between assembly tasks of different previously balanced products to recommend task to station assignments and learn assembly tasks dependencies.

Economic contribution

This approach considerably reduces the time and effort currently invested by manufacturing companies to initially balance new processes and rebalance existing ones. The mining approach automatically produces a dependency graph, otherwise outdated, incomplete, or altogether unavailable for manufacturing companies.

PROTOTYPE

Contact: Dlⁱⁿ Ouijdane Guiza, Pro2Future GmbH, ouijdane.guiza@pro2future.at, +43 732 2468 - 9465 **Acknowledgement**: This work was supported by Pro²Future (FFG, 881844), Wacker Neuson GmbH and D-MTM.

