QUALITY ASSESSMENT OF PELLETISED MATERIALS

In-line Quality Assessment of Pelletised Materials based on Fourier Descriptors

Sebastian Michlmayr², Dominik Neumann⁴, Bernhard Löw-Baselli^{1,3}, Bernhard Zagar²

Pro2Future GmbH¹, JKU-IME (Institute for Measurement Technology)², JKU-IPEC (Institute of Polymer Extrusion and Compounding)³, ECON GmbH³

- ¹ Pro2Future GmbH, Altenberger Strasse 69, 4040 Linz
- ² Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz
- ³ Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz
- ⁴ ECON GmbH, Biergasse 9, 4616 Bergern

MOTIVATION & GOALS

In the production of pelletised plastics, the **quality** of the resulting pellets is highly dependent on various **machine parameters**. Amongst others these are the **temperature** of the molten prime material and the **cooling** water, the **sharpness** of the cutters, and the **pressure** of the molten prime material.

The resulting reduced **production quality** is reflected by a change in colour or transparency and a change in the shape of the pellets.

Our goal was to **introduce parameters** to asses the pellets' shape in order to **determine** the **pellets' quality** and in a further step to control the production process in combination with other machine parameters to decrease the share of low quality output.

Project FactBox

Project Name Al Gran 2
Project ID MFP 4.2.1-1
Duration 36 Months

Area 4.2

Cognitive Production Systems

Project Lead

Dr. Wolfgang Roland

APPROACH

For the analysis we used a B&R Vison System Camera to take images of samples from the pellet **output stream** of the machine. **Changes** in colour can easily be detected by evaluating the mean grey-value.

For the analysis of the shape we used the so called **Fourier Descriptors** of each detected pellet's contour. We used the distribution of the relative magnitude of the Fourier Descriptors to assess general form and smoothness of the pellets' contour.

CONTRIBUTION

Scientific contribution

With this project the use of Fourier Descriptors as general shape descriptors was investigated. The result being that they can be applied to get a general description of the quality of an object's shape as well as an estimate of the specific shape (round, triangular, etc.).


Economic contribution

The preliminary results of this project showed, that it is possible to asses the pellets quality in a potentially cheap way. The subsequent control of the machine parameters may lead to a reduction of defective produced pellets and hence the connected costs.

OUTCOME

Depending on the intended shape of the pellet we used the sum of the **relative magnitudes** of a certain selection of lower order **Fourier Descriptors** to obtain a parameter for the smoothness. With this parameter a categorisation in high and low quality pellets was possible with similar results as was obtained by a categorization "by hand". This is shown in the image on the right with a threshold of approximately 0.79.

With the data of the **Fourier Descriptors**, other parameters obtained by the **image processing algorithms**, and the machine data the control of the **production quality** is the goal in the next step of the project, which will be conducted in collaboration with the Institute of Automatic Control and Control Systems Technology.

Left: Smoothness values (first order Fourier Descriptor) for 30 test images of spherical pellets (image on the right). The colours are based on a categorisation "by hand" in high quality (green), low quality (red) and multiple (blue).

Contact: DI Sebastian Michlmayr, MLBT, JKU-IME, sebastian.michlmayr@jku.at, +43 732 2468 5929 **Acknowledgement**: This work was supported by Pro²Future (FFG, 881844) and ECON GmbH.

