SMART COEXTRUSION BLOW MOLDING

In-Situ Detection of Co-Extrusion Flow Instabilities using Optical Coherence Tomography and Ultrasonic Techniques

Maximilian Zacher¹, Wolfgang Roland¹, Alexander Hammer², Bernhard Löw-Baselli²

Pro2Future GmbH¹, JKU-IPEC (Institute of Polymer Extrusion and Compounding)²

- ¹ Pro2Future GmbH, Altenberger Strasse 69, 4040 Linz
- ² Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz

Project FactBox

MFP II 4.2.1-3

48 Months

Project Name SmartCoEx

Cognitive Production Systems

Project ID

Duration

Area 4.2

Project Lead

Dr. Wolfgang Roland

MOTIVATION & GOALS

Co-extrusion is a widely used processing technique for combining various polymers with different properties into a tailored multilayer product. In these processes, **interfacial flow instabilities** are observed under certain conditions leading to **undesired product quality** such as optical and mechanical defects. For **systematic investigation** of these instabilities an **in-situ ultrasonic (US)** and **optical coherence tomography (OCT)** measurement system were developed:

- Two-layer co-extrusion die enabling controlled flow conditions
- Exchangeable die cover with glass window for OCT and direct coupling for US
- Real-time evaluation of flow instabilities
- Definition of objective and reliable classification criteria

CONTRIBUTION

Scientific contribution

- Co-extrusion demonstration die
- OCT and ultrasonic sensor technology
- Evaluation of OCT measurement system
- Automatic classification of process stability

Economic contribution

- Expertise in co-extrusion process technology
- Experience of critical flow situations
- Material and equipment for experiments

APPROACH

Experimental co-extrusion tests with US and OCT

RESULTS

Relative change of transit time and amplitude (intensity) for US detection of flow instabilities

B-scan of OCT measurement during coextrusion showing glass-melt and polymerpolymer interfaces

Real depth position of the polymer-polymer interface as function of time for an stable and unstable operating point

Process stability indicated by standard deviation of real depth position of the polymer-polymer interface

Contact: DI Maximilian Zacher, Pro2Future GmbH, maximilian.zacher@pro2future.at, +43 732 2468 - 6579 **Acknowledgement**: This work was supported by Pro²Future (FFG, 881844), JKU-IPEC and Soplar sa.

Institute of Polymer Extrusion and Compounding

