AI2HUMAN

Using AI for occupational safety and accident prevention Air Quality Monitoring

Bernhard Anzengruber-Tanase¹, Jaroslava Huber¹, Michael Haslgrübler¹, Viktorijo Malisa³, Martin Schobesberger², Alois Ferscha²

Pro2Future GmbH¹, JKU-IPC (Institute of Pervasive Computing)², AUVA³

- ¹ Science Park 4, Altenberger Strasse 69, 4040 Linz
- ² Science Park 3, Altenberger Strasse 69, 4040 Linz
- ³ Wienerbergstraße 11, 1100 Wien

MOTIVATION & GOALS

This project aims to leverage the emerging generation of Al-based production systems to promote occupational safety and accident prevention.

The project aims to implement the following goals:

- i. Survey of the research landscape concerning aspects of AI systems, such as robustness, transparency, trust, risk assessment, and evaluation.
- ii. Risk assessment of AI systems in upcoming industrial projects, beginning with identifying potential hazards, followed by the evaluation of risks and the implementation of measures to mitigate them.
- iii. Demo within a controlled factory environment. The demo will showcase implementations of robustness, transparency, trust, risk assessment, and evaluation principles in AI systems.

APPROACH

The project addresses its goals using a threefold approach:

- i. Participating in meetings of (inter)national standardization committees, to understand issues for safety and AI systems.
- ii. Cooperating with affiliated companies outside the project consortium, real world issues regarding Al systems and worker safety are identified and investigated.
- iii. Developing a prototype of a safe integration of an AI system into a production process and demo within the industrial setting.

Project FactBox

Project Name AI2HUMAN
Project ID MFP II 1.3
Duration 42 Months

Area 1

Perception and Aware Systems

Project Lead

Dr. Michael Haslgrübler

CONTRIBUTION

Scientific contribution

Analysis of current AI safety mechanisms used to reduce worker hazards.

Demonstration of a safe implementation of an AI system in an industrial environment.

Economic contribution

Providing a risk assessment for planned Al projects to minimize deployment risks.

Analytics

Offline

Analysis

SYSTEM ARCHITECTURE

Board Name:

Espressif ESP32-WROOM-32 SOC

Sensors:

Infineon Xensiv PASCO2
Sensirion SCD41/SEN55

Software:

MQTT Broker
Node-Red
InfluxDB/Grafana

infineon

Contact: Dr. Bernhard Anzengruber-Tanase, Pro2Future GmbH, bernhard.anzengruber@pro2future.at, +43 732 2468 - 9474 **Acknowledgement**: This work was supported by Pro²Future (FFG, 881844) and AUVA.

Decision Making

Visualization and

Analysis

Visualization